Total Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise
نویسندگان
چکیده
The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In order to alleviate the staircase effects, we propose a new model for restoring blurred images under impulse noise. The model consists of an ℓ1-fidelity term and a TV with overlapping group sparsity (OGS) regularization term. Moreover, we impose a box constraint to the proposed model for getting more accurate solutions. The solving algorithm for our model is under the framework of the alternating direction method of multipliers (ADMM). We use an inner loop which is nested inside the majorization minimization (MM) iteration for the subproblem of the proposed method. Compared with other TV-based methods, numerical results illustrate that the proposed method can significantly improve the restoration quality, both in terms of peak signal-to-noise ratio (PSNR) and relative error (ReE).
منابع مشابه
New explicit thresholding/shrinkage formulas for one class of regularization problems with overlapping group sparsity and their applications
The least-square regression problems or inverse problems have been widely studied in many fields such as compressive sensing, signal processing, and image processing. To solve this kind of ill-posed problems, a regularization term (i.e., regularizer) should be introduced, under the assumption that the solutions have some specific properties, such as sparsity and group sparsity. Widely used regu...
متن کاملColor Image Deblurring with Impulsive Noise
We propose a variational approach for deblurring and impulsive noise removal in multi-channel images. A robust data fidelity measure and edge preserving regularization are employed. We consider several regularization approaches, such as Beltrami flow, Mumford-Shah and Total-Variation Mumford-Shah. The latter two methods are extended to multi-channel images and reformulated using the Γ -converge...
متن کامل$\ell_0$TV: A Sparse Optimization Method for Impulse Noise Image Restoration
Total Variation (TV) is an effective and popular prior model in the field of regularization-based image processing. This paper focuses on total variation for removing impulse noise in image restoration. This type of noise frequently arises in data acquisition and transmission due to many reasons, e.g. a faulty sensor or analog-to-digital converter errors. Removing this noise is an important tas...
متن کاملNonlocal Variational Image Deblurring Models in the Presence of Gaussian or Impulse Noise
We wish to recover an image corrupted by blur and Gaussian or impulse noise, in a variational framework. We use two data-fidelity terms depending on the noise, and several local and nonlocal regularizers. Inspired by Buades-Coll-Morel, Gilboa-Osher, and other nonlocal models, we propose nonlocal versions of the Ambrosio-Tortorelli and Shah approximations to Mumford-Shah-like regularizing functi...
متن کاملAn Efficient Two-Phase L1-TV Method for Restoring Blurred Images with Impulse Noise
A two-phase image restoration method based upon total variation regularization combined with an L(1)-data-fitting term for impulse noise removal and deblurring is proposed. In the first phase, suitable noise detectors are used for identifying image pixels contaminated by noise. Then, in the second phase, based upon the information on the location of noise-free pixels, images are deblurred and d...
متن کامل